
Trends
There is no evidence for a single site of
working memory storage. Rather, per-
sistent neuronal activity that is informa-
tive about a currently memorized
stimulus can be found in sensory, par-
ietal, and prefrontal brain regions.

Working memory entails a gradient of
abstraction from sensory areas reflect-
ing low-level sensory features to pre-
frontal regions encoding more
abstract, semantic, and response-
related aspects of stimuli.

We hypothesize that all regions of neo-
cortex have the capability to briefly
retain their specialized representations
in the service of upcoming task
demands. Persistent activity in most,
if not all, cortical regions can exert con-
trol over future behavior.

The contributions of individual brain
regions to working memory are best
understood as different representa-
tional stages with various levels of
transformation and abstraction.
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Studies in humans and non-human primates have provided evidence for storage
of working memory contents in multiple regions ranging from sensory to parietal
and prefrontal cortex. We discuss potential explanations for these distributed
representations: (i) features in sensory regions versus prefrontal cortex differ in
the level of abstractness and generalizability; and (ii) features in prefrontal
cortex reflect representations that are transformed for guidance of upcoming
behavioral actions. We propose that the propensity to produce persistent
activity is a general feature of cortical networks. Future studies may have to
shift focus from asking where working memory can be observed in the brain to
how a range of specialized brain areas together transform sensory information
into a delayed behavioral response.

Storage of Working Memory Contents
Cognition critically depends on the ability to memorize information and change it adaptively. This
ability is typically ascribed to working memory, which has often been conceptualized as
comprising two basic functions: (i) short-term storage of information and (ii) executive processes
that retain no information themselves but control what is retained [1,2]. Here, we argue that
instead of being discrete, these functions could be considered extreme functional specializations
of a distributed working memory network combining storage and control. Different brain regions
might contribute to working memory in accordance with the general nature of their representa-
tions. Thus, we consider working memory to rely on the interplay between brain regions that
retain low-level or more abstract sensory information, and the transformation of this information
for guidance of memory-guided behavioral plans.

Traditionally, working memory research in neuroscience has focused on the question of where
contents are stored across delay periods. However, this is subject to ongoing debates [3–8].
Current views emphasize the representation of memorized contents in the prefrontal [3,8–10],
parietal [7], or sensory [5,11–13] cortices. Some views more clearly consider the representation
of memorized contents at multiple levels of the cortical hierarchy [2,4,14–17]. Localizing working
memory storage has proven difficult. The first neural models of working memory were primarily
shaped by lesion studies in humans and non-human primates [18–20]. For example, a seminal
study [18] performed lesions in prefrontal cortex (PFC) of monkeys and found deficits in their
ability to maintain task-relevant information across brief delays, while performance remained
intact for tasks that did not require memorization. This and similar work [21–25] led to the belief
that working memory is primarily a function of prefrontal cortex.

Later, electrophysiological [26] and functional magnetic resonance imaging (fMRI) studies
(reviewed in [27]) revealed persistent neural activity in various brain regions during memory
delays, including sensory cortices [28]. However, if a brain region X (say PFC) exhibits delay
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period activity during working memory delays, and if lesions to X decrease memory perfor-
mance, it does not necessarily mean that X encodes the working memory content during that
delay. Instead, region X might just have an influence on storage taking place in other regions. Any
neural signal that encodes working memory content should exhibit at least the following two
properties. First, it should contain information about what is memorized, meaning that different
memory contents lead to different patterns of activity (stimulus selectivity). Second, stimulus-
selectivity activity should be present over extended delays in the absence of the stimulus
(persistent activity or delay-period activity). The current review focuses on observations of such
persistent stimulus-selective activity (see Glossary) in single-cell and local field potential
recordings in non-human primates and in human neuroimaging [electroencephalography (EEG)
and fMRI]. Please note that delay activity in both sensory and prefrontal regions occasionally fails
to extend throughout the maintenance period [29], or can be absent altogether [30,31]. For this
reason, working memory mechanisms that do not rely on persistent activity (activity-silent
working memory [6,32–34]), that postulate encoding in dynamic firing trajectories [35,36]
or that involve gating of spiking activity by local field potentials [37] have also been postulated
(see Outstanding Questions). Importantly, persistent activity does not imply that a single
selective neuron is firing throughout the entire delay period. Instead, it means that the activity
of a neural population encodes stimulus-specific information at any point during the delay.
Furthermore, persistent stimulus-selective activity has been proposed to require recurrent
excitation [38,39], changes in synaptic facilitation or combinations of both [32,34,40].

Electrophysiological Recordings in Non-Human Primates
First reports of persistent working memory signals date back to the 1970s and describe studies
on non-human primates performing delayed response tasks. Most of these early studies
focused on the PFC because they were inspired by previous findings that lesions in the PFC
cause deficits in delayed response tasks [18]. In one study [41], monkeys were presented with
two lamps, one in the left and one in the right visual hemifield. At the beginning of a trial, one of the
lamps was briefly turned on. After a delay of a few seconds, the monkeys were trained to press a
key on the left or right, corresponding to the memorized side of the light. Activity in a subset of
cells in the dorsolateral prefrontal cortex (dlPFC) was modulated during the delay period. Some
cells discriminated between left and right stimuli, thus potentially providing evidence for content-
specific delay-period activity in the dlPFC. However, in this study the position of the lights was
correlated with the location of the response keys so that the selective delay-period activity might
as well have represented motor preparation rather than stimulus memory. The identification of
which feature is being represented is a general problem with memory-related representations
that is elaborated upon below.

Subsequent studies revealed cells in the PFC that encode memorized positions during the delay
period, even when controlling for response preparation [42]. Content-specific delay-period
activity in the PFC has been shown for many sensory features (Figure 1, left): objects and
natural images [43–45], color [46], and visual motion [29]; also for more abstract features such as
numerosity [47] and for other modalities such as the frequency of tactile vibrations [48]. Detailed
analyses of visual motion signals in the PFC during working memory has furthermore revealed
that they exhibit a tuning profile that is comparable to those found in sensory regions [29,49].

While working memory deficits after lesions in the PFC led most early electrophysiological
studies to focus on the PFC, further recordings in non-human primates have also revealed
persistent stimulus-selective activity for spatial location in V1 [50,51], for motion in MT [52] and
MST [49], for shapes and real-life stimuli in V4 and the temporal cortex [53–55], and for color in
the inferior temporal cortex [56,57] (Figure 1, left). Persistent stimulus-selective activity has also
been observed in the sensory cortices of other modalities, such as for pure tones in the auditory
cortex [58], for haptic texture in the primary somatosensory cortex [59] and, to some extent, for
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Glossary
Abstract representation: high-level
representation of memorized stimuli
that is less detailed with regards to
specific physical stimulus features,
but that allows for generalization
across a large number of stimuli that
share the same semantic property or
that belong to the same category.
Activity-silent working memory:
neural mechanisms of working
memory that are not directly
detectable as changes in spike rate
(or BOLD activity), for example:
temporary changes in synaptic
efficacy.
Distributed representations: neural
representations of a memorized
content (i.e., stimulus information)
that can be found in multiple neural
populations (see Box 4).
Dynamic firing trajectories:
encoding of working memory
contents in a dynamic temporal
pattern of spiking activity.
Persistent stimulus-selective
activity: any neural activity that takes
place after a sensory stimulus is no
longer present and that holds
information about that stimulus.
Sensory representation: low-level
representation of memorized stimuli
that carries detailed information about
the originally presented stimulus.
Turing machine: hypothetical
machine, invented by mathematician
Alan Turing as a thought experiment
on computational operations (see
Box 3).
vibration in the secondary somatosensory cortex [60]. An overview of evidence for persistent
stimulus-selective activity in primate electrophysiology is shown in Figure 1 (left; see Table S1 in
the supplemental information online).

Apart from the PFC and sensory cortices, persistent stimulus-selective activity has furthermore
been reported in the primate frontal eye fields (FEFs) [61], parietal cortex [62], premotor cortex
[60,63] and the medial temporal lobe [64]. Activity preceding delayed responses has also been
reported in subcortical areas such as the mediodorsal nucleus of the thalamus (see [65]),
superior colliculi [66], basal ganglia [67], and spinal cord [68] (not included in Figure 1).

Multivariate Decoding in Humans
In the human brain, it can be more challenging to identify content-specific delay-period activity
due to the limited spatial resolution of noninvasive neuroimaging techniques. Early neuroimaging
studies did not distinguish between content-selective and non-selective delay-period signals
[27]. Others reported category-specific differences, for example, between spatial locations and
objects [69] or houses and faces [70]. However, with the development of multivariate decoding
(also known as multivoxel pattern analysis; MVPA [71–74]), content-specific activity also became
accessible to human neuroimaging studies. This was further advanced by the development of
inverse encoding models [75–78]. Such studies have identified delay-period information about
sensory features in a range of sensory cortical regions (Figure 1, right). Low-level visual features
such as orientation, color, motion, or complex patterns can be decoded from early visual areas
[79–83]. Auditory stimuli can be read out from the primary auditory cortex [84,85]. Delay-period
information about complex visual pattern stimuli has also been found in parietal areas [81,86].
More recent human imaging studies eventually found content-specific delay activity also in
frontal areas [77,85,87–92], which was not observed in early MVPA studies [81,82]. Retinotopi-
cally organized area FEF, for instance, carries information about memorized spatial position in
several tasks [87]. Also, complex shapes [92] and oriented gratings [77] can be decoded from
human FEF (often also referred to as superior precentral sulcus). Furthermore, delay-period
representations of natural objects [88], Chinese script [93], auditory pure tones [85], and to a
limited extend, oriented gratings [77] can be decoded from signals in the lateral PFC. Additional
evidence for content-specific delay activity in human PFC comes from EEG studies [89–91] that
showed tactile stimulus frequency representations in prefrontal electrode locations.

Taken together, findings in non-human primates and humans reveal that the content of working
memory is widely distributed and can be found across sensory, parietal, temporal, and prefrontal
cortices (see Figure 1 and Table S1 in the supplemental information online, for an overview; see
also [77]).

Why Are Working Memory Representations Distributed?
The presence of working memory signals in both low-level and high-level cortices suggests
some kind of distributed representation (Box 1). There are several accounts for this finding
(Figure 2). For example, it could in theory reflect a full duplication of sensory information in the
PFC (Figure 2A; [8]). While the redundancy of such duplicate representations might, at first sight,
stand in contradiction to evolutionary frugality [4,5], it could be useful in establishing the
robustness of working memory contents against distraction (see below and [43,94–97]).
However, there also appear to be substantial differences in the functional roles of persistent
stimulus-selective activity between low-level and high-level brain regions. In the following, we
discuss two of these differences (see also Box 2): (i) persistent stimulus-selective activity reflects
different levels of abstraction with early sensory regions encoding simple features of stimuli in
sensory representations and prefrontal regions encoding memories using more abstract
representations or a verbal format (Figure 2B); and (ii) persistent stimulus-selective activity
reflects different functional roles of these representations across multiple cortical regions,
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Figure 1. Overview of Content-Specific Activity during Working Memory Delays in the Macaque (Left) and Human (Right) Brain. Icons indicate persistent
stimulus-selective activity for each stimulus type indicated by the icon (see legend) at the respective locations. Brain areas are identified by abbreviations (a full list of
individual studies is reported in Table S1 in the supplemental information online). Both left- and right-sided effects are shown on the left hemisphere. Data from delay-
periods during which subjects can prepare a specific motor output instead of memorizing a stimulus (e.g., delayed response tasks, e.g., [137]) and tasks that involve any
form of explicit mental transformation [192,193] or explicitly learned association [132] are excluded. AC, auditory cortex; ERC, enthorinal cortex; EVC, early visual cortex;
FEF, frontal eye fields; FG, fusiform gyrus; hMT+, human analog to MT/MST; IPS, intraparietal sulcus; IT, inferior temporal cortex; LOC, lateral occipital complex; lPFC,
lateral prefrontal cortex; PM, premotor cortex; PPC, posterior parietal cortex.
ranging from representing the incoming low-level sensory features to planning a memory-
dependent behavioral response (Figure 2C).

Different Levels of Abstraction
Imagine a task that involves memorizing one out of two visually presented animals (say a yellow
lion and a grey elephant, see Figure 2). It is possible to memorize the distinction between these
animals at different levels of abstraction, for example, using low-level visual features such as
outlines or colors, or abstract categories like type-of-animal. Importantly, the memory repre-
sentations can go beyond the features presented in the samples. In our example, it would be
possible to memorize images of animals based on their typical sounds, their verbal labels, or
even the emotions they evoke. In early work many authors believed working memory to be of a
purely verbal nature [98–102], but we now know that working memories can also have basic
sensory qualities [103–106]. Working memory signals in sensory and prefrontal cortices could
reflect such different levels of abstraction. This specialization between sensory and prefrontal
regions for different levels of abstraction is a general feature of cortical processing [2,107]. In the
field of working memory, it is supported by several lines of evidence.

An early route to distinguishing sensory from abstract memory representations has been to
require participants to memorize nonsense patterns or shapes that are hard to verbalize.
Behavioral studies using this strategy have shown that working memory can rely exclusively
on visual features [103]. Content-specific delay-period activity for such nonsense stimuli has
been found in ventral occipitotemporal cortex, dorsal occipitoparietal areas, and the frontal eye
fields, but not in PFC [53,81,86,92]. Interpreting these findings, however, relies on interpreting
null results, which can be difficult for imaging data in particular.
114 Trends in Cognitive Sciences, February 2017, Vol. 21, No. 2



Box 1. Distributed Representations

The term distributed representation is ambiguous and requires clarification. Several distinct interpretations can be
identified.
(1) Local pattern information: it has been repeatedly shown that the orientation of a grating stimulus during a working

memory delay can be decoded from patterns of brain activity in primary visual cortex [79]. In this case a distributed
representation means that the orientation information is disseminated across a local population of units within a single
area.

(2) Separable information in multiple brain regions: orientation information can also be decoded from signals in the lPFC,
independent of the decodable information in the primary visual cortex [77]. Distributed here means that there are
multiple local response patterns in parallel; each of which can be independently used to decode orientation. In this
review, this is what is meant by the term distributed representation.

(3) Inseparable information across multiple brain regions: finally, information might be encoded in global patterns of brain
activity that is not encoded at the level of individual regions. In this case, a single area would not allow for decoding of
such information, but considering the signals across multiple regions together would allow the extraction of information.

Distinguishing between Cases 2 and 3 experimentally requires an assessment of whether the different regions contain
sufficient information on their own to decode a stimulus feature, or whether only the combination of signals across areas
allows decoding. Thus, an important criterion is whether the information in the multiple regions is redundant. The
distinction between Case 2 and 3 is probably gradual rather than categorical. Memory codes could, for example, be
redundant or synergistic so that the information present in two regions is less or more than the sum, respectively.

If multiple, redundant, working memory representations indeed exist, it raises the interesting question which of them will
be used to solve any given task. Lesion studies are one way to answer this question, as partially evidenced from the fact
that many working memory tasks can be performed even after PFC lesions [20,156]. Another approach could be to
investigate the choice probabilities [157] associated with activity in particular areas to analyze which signals are maximally
predictive of behavioral choices in a memory task.
A different approach to dissociate levels of abstraction is to use stimuli with both low-level and
abstract features and to vary the degree to which the task emphasizes sensory detail. One
recent neuroimaging study [88] capitalized on this strategy using real-life visual objects. In one
(visual) condition, participants were shown an object fragment and asked whether this fragment
belonged to a memorized item or not. In another (nonvisual) condition, they had to report
whether a new object (e.g., a watch) belonged to the same category as the memorized item (e.
g., a clock). Sensory areas exhibited delay-period information about the stimulus during the
visual task but not during the nonvisual task. Prefrontal areas showed the opposite pattern.
Similarly, the PFC was found to represent color information when individuals were asked to
discern clearly categorizable colors, but not when discriminating subtle color hues [31,46]. This
distinction between memory representations for fine-grained color hues and color category is
further supported by recent behavioral experiments and modeling work [108].

Another way of testing whether a brain region encodes abstract information is to assess to which
degree neuronal memory representations generalize across different stimuli. In one series of
studies [109,110], for instance, macaques were trained to memorize morphed images of
animals whose low-level visual features could vary either within category or across a category
boundary between cats and dogs. Prefrontal neurons generalized more across different exem-
plars of the same category than neurons in the inferior temporal cortex. Likewise, converging
evidence from human [91] and non-human primate electrophysiology [63] indicates that neurons
in frontal areas that were initially demonstrated to represent memorized tactile vibration fre-
quencies [48], can in fact represent parametric memories from a range of sensory modalities
(visual, auditory, and tactile). Frontal areas thus appear to encode these memories in an abstract,
amodal magnitude format [111], while parametric delay activity in modality-specific sensory
cortices is mostly absent [89,91,112]. Prefrontal areas have also been shown to host memory
representations of abstract number information [47,113] in formats that may generalize across
sensory modalities [114,115].

Taken together, these findings are compatible with a division of labor, in which sensory regions
encode low-level details and prefrontal regions encode abstract, categorical information that
Trends in Cognitive Sciences, February 2017, Vol. 21, No. 2 115



Sensory details Abstract category

Lion

Elephant

Sample Delay

Time

Fi
rin

g 
ra

te Dog

Dog

Cat

Cat

Classifica�on accuracy

0.50 0.53 0.56 0.59 0.62

270
315

50

0

45
90

135

180

225

25

Choice(A)

Feature-based a�en�on(C)

(B)

Figure 2. Potential Explanations for Persistent Stimulus-Selective Activity in Prefrontal Cortex during Working Memory Delays, Shown Here for the
Example of Memorizing a Lion (versus an Elephant). (A) The prefrontal cortex maintains sensory details with similar resolution to sensory brain regions [29,77]. The
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Prefrontal cortex prospectively encodes feature-based attention during the delay that prepares for an upcoming search for the target. This can serve as a potential bias
signal for feature-selective representations in early visual cortex [196].
generalizes across modalities [5,116,117]. A computational advantage of storing low-level
features in sensory areas is that it circumvents the necessity to duplicate low-level feature
spaces for persistent storage in higher brain regions (Figure 2A, [5,116]). Persistent stimulus-
selective activity in the PFC can then be used to build flexible and task-dependent representa-
tions, such as arbitrary categorical labels (Figure 2B; [116]). However, some studies have
suggested that also low-level features can be represented in the PFC [46,77], which appears
to be at odds with a distinction based purely on the level of abstraction. It has been proposed
that such representations of low-level sensory features in the PFC might reflect memorization
using a nonsensory neural code [31] (see also Box 2). For example, orientation information can
be memorized using symbolic, numerical cues and this does not necessarily involve persistent
stimulus-selective in sensory cortices (see Supplementary Material in [79]). Alternatively, as we
outline next, the prevalence of sensory information in the PFC might reflect the transformation of
sensory information in a form that serves to prepare for an upcoming behavioral response.

Transformation from Sensory Input to a Behavioral Response
A central function of working memory is to bridge the gap between a stimulus and a response
that is to be executed while the stimulus is no longer present. The PFC seems to encode the to-
be-memorized information in a format that can directly guide behavior ([5,14,15,118,119]).
Persistent activity thus not only reflects a retrospective memory of the stimulus but also a
prospective action plan. Such entangled tuning for different cognitive variables has been
observed repeatedly in the PFC [120] and has been proposed as a general model of PFC
function [121].

The transformation of sensory signals into an intermediate format that bridges between stimuli
and delayed target responses can be easily appreciated. Consider a task that involves memo-
rizing a picture of a lion and selecting this animal from one of two alternative targets after a delay.
The incoming target stimulus to which a memorized sample must be matched will drive the
116 Trends in Cognitive Sciences, February 2017, Vol. 21, No. 2



Box 2. A Hierarchy of Spatial Scale

Spatial maps can be found in visual, parietal, and frontal cortices alike [158–160]. This reflects the predominance of space
as an organizational principle across many brain areas. The encoding of memorized positions has also been observed
across many stages of the cortical hierarchy including in the lPFC [31,61,62,76,87]. As for nonspatial features, there is a
gradient of representation across the hierarchy: (i) higher-level areas exhibit larger spatial receptive fields [161–163]; (ii)
spatial mnemonic representations in parietal and frontal cortices are closely tied to the preparation of actions and the
control of attention shifts [164–166]; and (iii) spatial representations in higher-level regions generalize across many
different sensory modalities [167–169] and involve nonretinal frames of reference [135,170]. In contrast, lower-level maps
are recruited when tasks demand memory of fine spatial detail in retinal coordinates [50].

Mnemonic maps of visual space could also be involved in the representation of other feature information. For example,
real-life objects are not spatially homogeneous and are known to elicit differential distributions of attention and saliency
across space, even for objects of similar size [171]. The frontal eye fields and parietal cortex encode the spatial
distribution of saliency within natural images [172,173]. Thus, information that appears to be specific to the nonspatial
features of an object might also depend on spatial memory of particularly salient subregions within the shape of the
object.

Stimulus-selective information in the PFC has been shown for low-level nonspatial features such as grating orientation
[77] and motion direction [29,49]. Recent behavioral and electrophysiological work suggests that spatial strategies might
play a role in memorizing such features [174]. Consistent with this possibility, orientation-selective responses in V1
correlate with the topography of spatial selectivity, demonstrating joint selectivity for orientation and space [175]. In line
with this, selectivity for orientation, motion, and space during working memory largely overlap in parietal and frontal
cortices (see Figure 1). Hence, feature-selective representations during working memory could arise at multiple
representational scales of space that are distributed across the cortical hierarchy.
sensory cortex in a similar way as the sample. Thus, their traces would likely interfere if they were
maintained in the same low-level area (see [43,94–97]). A solution would be to transform the
representation and store it in a manner that allows the comparison to subsequent stimuli. For
example, the relevant features of the lion could be maintained in the PFC as a feature-selective
attentional search template [122,123]. This would have the additional advantage of avoiding
interference between sample and target stimuli, avoiding that they overwrite the representation
of the sample [124]. If this is the case, the nature of stimulus representations in PFC should be
strongly task dependent [123]. Finding a yellow lion among yellow giraffes, for instance, benefits
from an attentional focus on shape rather than color, whereas finding a yellow lion among grey
elephants will benefit more from an attentional focus on color rather than shape ([125],
Figure 2C).

The transformation of a sensory item into a behavioral response can be observed at multiple
hierarchical levels of the brain, ranging from sensory to prefrontal cortices [122,123,126–128],
and culminates in concrete preparatory motor activity in the premotor and primary motor
cortices [129,130]. Furthermore, as this process unfolds during the delay-period, task-related
preparation signals are expected to gradually increase in strength and be strongest immediately
before the onset of the test stimulus. This is indeed what is found in the PFC; at least in a subset
of cells [6,43] (see also [95,131]), which suggests that these forms of persistent activity can also
play a preparatory role, going beyond the memorization of sensory information. Such a
response-oriented, prospective nature of representations in the lateral prefrontal cortex (lPFC)
is further supported by delayed paired association tasks [132], where animals are required to
learn an association between a sample and test stimulus, separated by a brief delay. Under
these conditions, PFC neurons encode the transformation from a memory representation of the
sample stimulus to a representation of the expected paired associate in preparation of the test
stimulus presentation.

A Working Memory Gradient
We conceptualize working memory as a hierarchical process that links detailed sensory
representations to specific behavioral responses via intermediate task-relevant representations
and action plans in a network of brain areas that each represent the working memory in a format
Trends in Cognitive Sciences, February 2017, Vol. 21, No. 2 117



that matches their functional specialization (see also [15]). Thus, we propose that every cortical
region can produce persistent stimulus-selective activity if the features that are coded in that
region need to be memorized across a delay to prepare for an upcoming response. Such a
universal cortical capability to produce persistent activity explains a simple observation that may
not have received the attention it deserves, and which we here put forward as a central
hypothesis: all features that are represented in the neocortex can be briefly memorized.
Violations of this rule would provide important insights into the mechanisms underlying working
memory. As far as we know, however, this proposal holds for low-level as well as high-level
sensory features, which can be stored as persistent activity in lower and higher areas of the
cerebral cortex, respectively. It also holds for transformed representations that are used to guide
upcoming behavior.

The two potential explanations for the distributed nature of working memory outlined above are
not mutually exclusive. In fact, they both roughly map on a similar posterior-to-frontal axis of
functional brain organization. At the posterior end, the sensory cortices represent incoming
sensory information in a relatively pure and detailed form. At the frontal end of the gradient, the
frontal cortex represents information that is abstracted and transformed in support of upcoming
behavior. Some of the frontal representations are abstract and categorical [109], however, other
representations more directly support the execution of actions [15,133], and code for remem-
bered action features such as the location of objects in eye coordinates for eye movements
[134], in arm coordinates for hand movements [129], or even in object coordinates if this is
required for the task [135].

Areas in between the sensory and prefrontal cortices might maintain intermediate transforma-
tions in many different formats. The gradients mentioned can be observed at multiple stages and
reflect the increasing levels of processing and abstraction across subsequent stages of stimulus
processing. One major visual stream, for example, originates from the primary visual cortex, and
then proceeds via the extrastriate and inferior temporal cortices to the lPFC. It is well established
that the tuning of single cells in these regions exhibits increasing degrees of spatial invariance,
stimulus generalization, and abstraction. Whereas cells in V1 are selective to the detailed low-
level features of stimuli, cells in inferior temporal cortex exhibit translational invariance and they
can generalize across different low-level features [136]. Consistently, inferior temporal cells
exhibit persistent stimulus-selective activity for objects during working memory delays [54]. Our
review of the literature (see Figure 1) is generally consistent with the notion of a gradient with
increasing levels of abstraction of memory signals across different levels of processing.

Which nodes maintain working memory representations depends on which format is the most
suitable to perform the task at hand. When, for instance, detailed sensory information is required
to perform a task, it makes sense to store stimulus information in areas suitable to represent such
details, like the early sensory cortex. In contrast, when a task promotes the use of categorical
information, it may be stored in a more abstract or verbal format by neurons higher in the
processing hierarchy. Finally, if the appropriate response is known as soon as a sample stimulus is
shown, working memory can also be encoded in the form of a pure response plan [137].

The notion of a distributed working memory network that postulates the ability of retention as a
general principle in the neocortex has a long history [133,138]. Already early on, behavioral
studies have revealed the effects of varying levels of processing in memory [139] and have
distinguished between stores for different stimulus modalities [1]. More recent accounts of
distributed working memory have emphasized different timescales of retention in different
brain areas [140,141], the role of attentional processes in the retention of memories
[4,11,142], and the utility of synaptic plasticity and dynamic firing trajectories for working memory
[2,6,32,35,143].
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Our hypothesis is ignorant about the precise mechanism for persistent activity: it might be
generated within the cortex itself or rely on recurrent loops through subcortical structures, such
as the thalamus or basal ganglia [144–147]. Furthermore, the working memory gradient outlined
above does not require a separate homunculus control mechanism [145,146,148], but can
instead be produced by the underlying neural circuits themselves, similar to the idea of a Turing
machine ([149], Box 3). Indeed, recent computational studies have reported biologically
plausible learning rules that can induce persistent activity for working memory, specifically
for those features that need to be kept online during memory delays [150,151].

The ability of the brain to simultaneously encode working memory representations in multiple
regions and at different levels of abstraction and response preparation necessarily involves
redundancy. One advantage of redundancy is that it strongly increases the robustness of
working memory representations. One study investigated simultaneous representations of a
motor plan in the left and right premotor cortex. It was found that memory signals could be
restored from the contralateral (i.e., redundant) side when one side was optogenetically silenced
[152]. More generally, simultaneous and partially redundant representations might reflect the
effects of representational loops that have been postulated for visual (attention-based rehearsal,
[11]) and verbal (phonological loop, [1]) working memory.

Given the abundance of neurons capable of persistent activity, it is remarkable that the capacity
to retain information in working memory is severely limited [153,154]. Hence, there must exist
restrictions on the number of coactive memories per node and/or the number of coactive nodes.
While individual stores might already have capacity restrictions [46,155], we suggest that
properties of the overall working memory network might contribute to limitations of capacity
as well (see Box 4). Specifically, if the maintenance of every individual memory item relies on the
Box 3. Distributed Control of the Working Memory Network

Here, we propose that signals in all cortical regions can exhibit a short-term buffering of information, depending on the
nature of the task. Accordingly, working memory contents can range from low-level to abstract features and from sensory
to motor codes. This raises the question how the distributed storage across multiple regions is coordinated. Theore-
tically, it might be conceivable that one or a few regions specifically control encoding, storage and retention, similar to a
central executive [1]. However, it is also conceivable that control itself is distributed [176,177]. On the one hand, prefrontal
regions can exert top-down attentional control and influence which low-level features are selected to be encoded in
working memory. On the other hand, a low-level sensory cue (or its working memory) encoded in the sensory cortex can
define a task and thus influence activity in the PFC. Thus, control cannot only go top-down but also bottom-up, and some
sense of control thus seems to be present across the entire hierarchy.

The proposal that every brain region can exert an influence over processing in (most) other regions when it is required by
the task is conceptually related to models that only involve states and transitions between states. Such models, for
instance Markov processes [178] or Turing machines [179], do not require a centralized control system. A Turing machine
is a hypothetical apparatus developed by Alan Turing to address the nature of computational operations. Turing
machines consist of a finite-state machine and an infinite tape. Actions are selected based on the internal state of
the machine and the symbol of the tape currently ‘seen’ by the machine. Selected actions then cause the machine to
change its internal state by writing a new symbol to the tape, and/or shifting the tape to reveal the next symbol. The
computational versatility of Turing machines arises from this continuous cycle of actions and the updating of internal
states and ‘tape memory’. Importantly, the tape can specify simple input but also entire programs using a similar format.
Clearly, there are many differences between Turing machines and brains (e.g., Turing machines are serial and lack the
distinction between long-term and working memory). Yet, there are also interesting analogies with working memory
processes in the brain [149]. For instance, working memories are internal neural states, which may encode previous
sensory inputs or even complex task rules. These memories in turn influence the selected actions. Motor actions
influence incoming sensory information (e.g., arm movements influence proprioception and eye movements change
visual input). Likewise, internal actions, like attention shifts or the recall of associations, modulate active mnemonic codes
in the frontal cortex and lower brain areas. Thus, selected actions can impact the pattern of sensory input, the activated
mnemonic codes, or both (just as actions of Turing machines change the internal state, the tape, or both). Consequen-
tially, new actions can be selected at the next time step, causing new changes in sensory input and working memory
contents. This succession of action selection and updating of sensory and mnemonic codes in working memory
resembles the workings of a Turing machine.
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Box 4. The Limited Capacity of Working Memory

The wide distribution of persistent stimulus-selective responses in the primate brain yields the question whether capacity
limitations in working memory reflect properties of individual storage regions, or a property of the distributed network.
Behavioral models assume either a slot-based [180,181] or resource-based [182,183] limitation of capacity. At a neural
level, several factors might limit memory capacity.

Competition for representation: multiple items may compete for representation within the same representational maps (e.
g., of visual space in V1) or in any other limited ‘cortical real estate’ [155], such that individual memorized items interfere
with each other during the delay period or already during encoding [46]. In line with this, individual visual working memory
capacity is correlated with the volumetric size of V1 [184], and persistent stimulus-selective activity per memory item
decreases with increasing load [12]. Capacity increases with the sparseness of neural representations that leads to less
interference between representations [40]. It can be further improved by synaptic facilitation [40]. In contrast, capacity
might be a global rather than local property of the working memory network. For example, memorization of low-level
visual features reduces the ability to retain low-level auditory information [185].

Distributed storage: the above-mentioned interference among memory representations could decrease if different
individual stimuli of the same type (e.g., multiple oriented gratings) were represented in different brain areas. Memorized
stimuli that are currently relevant for an ongoing task and that are in the focus of attention [186] might, for instance, be
retained by detailed representations in sensory cortex, while secondary memory items that are stored for later use are
retained in a coarser, more abstract form in anterior regions [187]. This would explain why persistent stimulus-selective
activity in sensory regions is weaker or absent for items that are stored outside the focus of attention, while it is reinstated
as soon as they regain their relevance [30,76,188].

Task-relevant detail: the level of detail required for a working memory task has implications for capacity. The posterior-to-
frontal gradient of increasing abstraction proposed here (see ‘Different Levels of Abstraction’) can be interpreted as a
form of complexity reduction [189] or ‘chunking’ [153]. For example, ‘d’, ‘o’, and ‘g’ are more easily retained as a word
(‘dog’) than as individual letters [190]. Similarly, and in accordance with the flexible allocation of memory resources
[182,183,191], higher cortical areas can retain larger chunks of low-level features that would be difficult to store
individually in lower level regions. However, such chunking involves a step of abstraction that might discard low-level
visual features.

Outstanding Questions
What is the mechanism of retention?
Two main neurocomputational mecha-
nisms of retention have been proposed:
(i) activity-based retention, such as spik-
ing activity, reverberatory activity, feed-
forward-connected subgroups of
neurons (synfire chains), oscillatory
dynamics, or high-dimensional dynamic
trajectories; and (ii) activity-silent reten-
tion, where stimulus-selective represen-
tations are maintained as a pattern of
synaptic weights. These two mecha-
nisms are not mutually exclusive and
might jointly contribute to retention.

How does the current relevance of a
memorized item affect its retention?
Behavioral studies suggest a distinction
between attended and unattended
(accessory) items held in memory, but
persistent stimulus-specific activity has
only been reported for attended items.
Unattended representations might be
retained (i) as activity-silent synaptic
representations, (ii) using a different
neural code than attended representa-
tions (e.g., on different levels of abstrac-
tion; see Box 4), or (iii) as weaker activity
patterns then attended ones.

How can we distinguish between true
mnemonic activity of a feature and
encoding of other stimulus-related fac-
tors? Different sensory stimuli are
known to be associated with differen-
ces in valence, motor affordance, and
ease of recognition. All these features
are known to affect signals across the
neocortex. Thus, signals that appear to
be stimulus selective might instead
reflect encoding of these other features.

How is the retention of multiple items
coordinated and how do these memo-
ries interact? Storing stimulus informa-
tion in memory in multiple formats and
areas in parallel can increase working
memory robustness. However, to date
it is unclear: (i) how multiple memory
representations interact, (ii) which
mechanism selects which memory will
guide behavior, (iii) how parallel repre-
sentations can compensate for pertur-
bations and interference (e.g., by
distracting stimuli), and (iv) how the
retention of a particular working mem-
ory content is terminated.
activity within a widespread network, the representations of multiple memoranda will more
readily interfere with each other. Consequently, the selection of the nodes that will retain
stimulus- or response-selective information across a delay interval should strongly depend
on task requirements [80,88] to avoid interference (e.g., from distractors, [43,94–97]) and
thereby boost memory capacity (see Outstanding Questions).

Concluding Remarks
There is abundant evidence for widely distributed stimulus-related information in sensory,
parietal, and prefrontal cortices during working memory delays. In the absence of evidence
implicating any of these regions as an exclusive and localized store of memory contents, we
suggest that working memory is better characterized as a distributed network that gradually
transforms sensory information towards an appropriate behavioral response, across a temporal
delay. Persistent stimulus-specific activity might be observed anywhere in such a network and at
any stage of transformation. Localization will thus strongly depend on the precise requirements
and context of the task. This notion suggests that perhaps the field of working memory should
shift its focus from asking where in the brain working memories are stored to unraveling how a
range of highly specialized brain areas together transform a sensory stimulus into an appropriate
response and how this process is sustained as a working memory across delays.
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